Decomposition of Elementary Transvection in Elementary Group


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Let σ = (σij ) be an elementary net (elementary carpet) of additive subgroups of a commutative ring (in other words, a net without diagonal), n the order of σ, ω = (ωij ) the derived net with respect to σ, and Ω = (Ωij ) the net associated with the elementary group E(σ). It is assumed that ω ⊆ σ ⊆ Ω and Ω is the smallest (complemented) net containing σ. The main result consists in finding the decomposition of any elementary transvection tij(α) into the product of two matrices M1 ∈ 〈tij(σij), tji(σji)〉 and M2 ∈ G(τ), where \( \uptau =\left(\begin{array}{ll}{\varOmega}_{11}\hfill & {\upomega}_{12}\hfill \\ {}{\upomega}_{21}\hfill & {\varOmega}_{22}\hfill \end{array}\right) \).

Об авторах

R. Dryaeva

North-Ossetian State University

Автор, ответственный за переписку.
Email: dryaeva-roksana@mail.ru
Россия, Vladicaucasus

V. Koibaev

North-Ossetian State University, South Mathematical Institute of the Russian Academy of Sciences

Email: dryaeva-roksana@mail.ru
Россия, Vladicaucasus

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media New York, 2016

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).