🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

On Quasi-Nonuniform Estimates for Asymptotic Expansions in the Central Limit Theorem


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Improved asymptotic expansions are constructed in terms of the Chebyshev–Hermite polynomials in the local form of the central limit theorem for sums of independent identically distributed random variables under the condition of absolute integrability of some positive powers of the the characteristic function of a summand. The influence of the requirements to the order of existing moments on the accuracy of approximation is discussed. Theoretical results are illustrated by the example of a particular shifted exponential distribution.

About the authors

V. V. Senatov

Moscow State University

Author for correspondence.
Email: v.senatov@yandex.ru
Russian Federation, Moscow

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Springer Science+Business Media New York