On Quasi-Nonuniform Estimates for Asymptotic Expansions in the Central Limit Theorem


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Improved asymptotic expansions are constructed in terms of the Chebyshev–Hermite polynomials in the local form of the central limit theorem for sums of independent identically distributed random variables under the condition of absolute integrability of some positive powers of the the characteristic function of a summand. The influence of the requirements to the order of existing moments on the accuracy of approximation is discussed. Theoretical results are illustrated by the example of a particular shifted exponential distribution.

Об авторах

V. Senatov

Moscow State University

Автор, ответственный за переписку.
Email: v.senatov@yandex.ru
Россия, Moscow

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media New York, 2016

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).