Isometries of Spaces with Torsion


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In this paper, we study automorphisms (isometries) in Riemann–Cartan spaces (spaces with torsion) of positive definite and alternating Riemannian metrics. We prove that if the connection is semisymmetric, then the maximal dimension of the Lie group of isometries of an n-dimensional space is equal to \( \frac{n\left(n-1\right)}{2}+1 \). If n = 3, then the maximal dimension of the group is equal to 6 and the connection of the maximally movable space is skew symmetric. In this case, the space has a constant curvature k and a constant torsion s, while the Ricci quadratic form is positive (negative) definite if and only if k > s2 (respectively, k < s2) and is equal to zero if k = s2. We construct a maximally movable stationary de Sitter model of the Universe with torsion and propose a geometric interpretation of the torsion of spatial sections.

作者简介

V. Panzhensky

Penza State University

编辑信件的主要联系方式.
Email: geometry@spu-penza.ru
俄罗斯联邦, Penza

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media New York, 2016