Isometries of Spaces with Torsion


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

In this paper, we study automorphisms (isometries) in Riemann–Cartan spaces (spaces with torsion) of positive definite and alternating Riemannian metrics. We prove that if the connection is semisymmetric, then the maximal dimension of the Lie group of isometries of an n-dimensional space is equal to \( \frac{n\left(n-1\right)}{2}+1 \). If n = 3, then the maximal dimension of the group is equal to 6 and the connection of the maximally movable space is skew symmetric. In this case, the space has a constant curvature k and a constant torsion s, while the Ricci quadratic form is positive (negative) definite if and only if k > s2 (respectively, k < s2) and is equal to zero if k = s2. We construct a maximally movable stationary de Sitter model of the Universe with torsion and propose a geometric interpretation of the torsion of spatial sections.

Об авторах

V. Panzhensky

Penza State University

Автор, ответственный за переписку.
Email: geometry@spu-penza.ru
Россия, Penza

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media New York, 2016

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).