🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Calculation of Pfaffians by a Chip Removal


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We describe a new combinatorial-algebraic transformation on graphs which we call “chip removal.” It generalizes the well-known Urban Renewal trick of Propp and Kuperberg. The chip removal is useful in calculations of determinants of adjacency matrices and matching numbers of graphs. A beautiful example of this technique is a theorem on removing four-contact chips, which generalizes Kuo’s graphical condensation method. Numerous examples are given. Bibliography: 10 titles.

About the authors

V. E. Aksenov

ITMO University

Email: kpk@arbital.ru
Russian Federation, St. Petersburg

K. P. Kokhas

ITMO University; St.Petersburg State University

Author for correspondence.
Email: kpk@arbital.ru
Russian Federation, St. Petersburg; St. Petersburg

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Springer Science+Business Media New York