Calculation of Pfaffians by a Chip Removal


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

We describe a new combinatorial-algebraic transformation on graphs which we call “chip removal.” It generalizes the well-known Urban Renewal trick of Propp and Kuperberg. The chip removal is useful in calculations of determinants of adjacency matrices and matching numbers of graphs. A beautiful example of this technique is a theorem on removing four-contact chips, which generalizes Kuo’s graphical condensation method. Numerous examples are given. Bibliography: 10 titles.

Об авторах

V. Aksenov

ITMO University

Email: kpk@arbital.ru
Россия, St. Petersburg

K. Kokhas

ITMO University; St.Petersburg State University

Автор, ответственный за переписку.
Email: kpk@arbital.ru
Россия, St. Petersburg; St. Petersburg

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media New York, 2016

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).