Investigation on Electrochemical Micromachining (ECMM) of Copper Inorganic Material Using UV Heated Electrolyte
- Authors: Soundarrajan M.1, Thanigaivelan R.1
- 
							Affiliations: 
							- Department of Mechanical Engineering
 
- Issue: Vol 91, No 11 (2018)
- Pages: 1805-1813
- Section: Applied Electrochemistry and Metal Corrosion Protection
- URL: https://journals.rcsi.science/1070-4272/article/view/216197
- DOI: https://doi.org/10.1134/S1070427218110101
- ID: 216197
Cite item
Abstract
The need for micro components/devices in the field of aerospace, automobile and medical is increasing day by day. There are various methods are available for manufacturing of such components/devices. Among the various non-traditional machining techniques, electrochemical micromachining is found to be more suitable due to the reason for its higher material removal rate, good surface quality and accuracy. In this research the microhole machining is performed on the copper inorganic work piece. During the machining, electrolyte has been heated using ultraviolet (UV) rays. L18 orthogonal array (OA) is planned using electrolyte concentration (Ce), machining voltage (Vm), duty cycle (Cd) and electrolyte temperature (Te). The process parameters are optimized using technique for order of preference by similarity to ideal solution (TOPSIS) and grey relational analysis (GRA). Two optimal parametric combinations are obtained, such as 30 g L–1, 7 V, 65% and 34°C using TOPSIS and 30 g L–1, 9 V, 55% and 36°C using GRA. Based on ANOVA the electrolyte concentration shows nearly 65% contributions among the other process parameters. Additionally Scanning electron microscope (SEM) images have been used for the better understanding of roundness of micro-hole.
About the authors
M. Soundarrajan
Department of Mechanical Engineering
							Author for correspondence.
							Email: soundarrajan05@gmail.com
				                					                																			                												                	India, 							Rasipuram, Namakkal (Dt), 637408						
R. Thanigaivelan
Department of Mechanical Engineering
														Email: soundarrajan05@gmail.com
				                					                																			                												                	India, 							Mallasamudram, Namakkal (Dt), 637503						
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
				 
  
  
  
  
  Email this article
			Email this article  Open Access
		                                Open Access Access granted
						Access granted Subscription Access
		                                		                                        Subscription Access
		                                					