Using Convolutional Neural Networks for Cloud Detection from Meteor-M No. 2 MSU-MR Data
- Авторы: Andreev A.I.1, Shamilova Y.A.1, Kholodov E.I.1
-
Учреждения:
- Far Eastern Center
- Выпуск: Том 44, № 7 (2019)
- Страницы: 459-466
- Раздел: Article
- URL: https://journals.rcsi.science/1068-3739/article/view/231161
- DOI: https://doi.org/10.3103/S1068373919070045
- ID: 231161
Цитировать
Аннотация
A method for cloud detection using the machine-learning algorithm based on a convolutional neural network is presented. Input data are satellite images received from the MSU-MR multispectral low-resolution scanning unit onboard the Meteor-M No. 2 satellite. The developed method can be an alternative to the traditional algorithms of cloud detection based on the calculation of differential indices and thresholds. The algorithm is verified using the machine-learning metrics, comparing the resulting cloud mask with the reference one obtained by interpreting the satellite image by an experienced meteorologist. It was also compared (for verification) with a similar product based on VIIRS spectroradiometer data. The cloud mask computed using the algorithm allows the automatic thematic processing of satellite images.
Ключевые слова
Об авторах
A. Andreev
Far Eastern Center
Автор, ответственный за переписку.
Email: andreev.alexander.ivanovich@gmail.com
Россия, ul. Lenina 18, Khabarovsk, 680000
Yu. Shamilova
Far Eastern Center
Email: andreev.alexander.ivanovich@gmail.com
Россия, ul. Lenina 18, Khabarovsk, 680000
E. Kholodov
Far Eastern Center
Email: andreev.alexander.ivanovich@gmail.com
Россия, ul. Lenina 18, Khabarovsk, 680000
Дополнительные файлы
