Using Convolutional Neural Networks for Cloud Detection from Meteor-M No. 2 MSU-MR Data


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A method for cloud detection using the machine-learning algorithm based on a convolutional neural network is presented. Input data are satellite images received from the MSU-MR multispectral low-resolution scanning unit onboard the Meteor-M No. 2 satellite. The developed method can be an alternative to the traditional algorithms of cloud detection based on the calculation of differential indices and thresholds. The algorithm is verified using the machine-learning metrics, comparing the resulting cloud mask with the reference one obtained by interpreting the satellite image by an experienced meteorologist. It was also compared (for verification) with a similar product based on VIIRS spectroradiometer data. The cloud mask computed using the algorithm allows the automatic thematic processing of satellite images.

Sobre autores

A. Andreev

Far Eastern Center

Autor responsável pela correspondência
Email: andreev.alexander.ivanovich@gmail.com
Rússia, ul. Lenina 18, Khabarovsk, 680000

Yu. Shamilova

Far Eastern Center

Email: andreev.alexander.ivanovich@gmail.com
Rússia, ul. Lenina 18, Khabarovsk, 680000

E. Kholodov

Far Eastern Center

Email: andreev.alexander.ivanovich@gmail.com
Rússia, ul. Lenina 18, Khabarovsk, 680000

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Allerton Press, Inc., 2019