Estimation of surface air temperature trends over the Russian Federation territory using the quantile regression method


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The results are presented of the estimation of surface air temperature variations in different climatically quasi-homogeneous regions of Russia using the nonparametric method of regression analysis (quantile regression). Daily observation records from 517 weather stations were used. The quantile regression technique used for analyzing the trends in long-term series allows obtaining information on trends for the whole range of quantile values from 0 to 1 of dependent variable distributions. Seasonal and regional features of daily minimum, mean, and maximum air temperature trends are considered in a wide range of quantile values. The proposed method that generalizes long-term trends obt ained for groups of stations by quantile regression, is applied to quasi-homogeneous climate regions identified on the territory of Russia.

作者简介

A. Sterin

All-Russian Research Institute of Hydrometeorological Information-World Data Center

编辑信件的主要联系方式.
Email: sterin@meteo.ru
俄罗斯联邦, ul. Koroleva 6, Obninsk, Kaluga oblast, 249035

A. Timofeev

All-Russian Research Institute of Hydrometeorological Information-World Data Center

Email: sterin@meteo.ru
俄罗斯联邦, ul. Koroleva 6, Obninsk, Kaluga oblast, 249035

补充文件

附件文件
动作
1. JATS XML

版权所有 © Allerton Press, Inc., 2016