Estimation of surface air temperature trends over the Russian Federation territory using the quantile regression method


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The results are presented of the estimation of surface air temperature variations in different climatically quasi-homogeneous regions of Russia using the nonparametric method of regression analysis (quantile regression). Daily observation records from 517 weather stations were used. The quantile regression technique used for analyzing the trends in long-term series allows obtaining information on trends for the whole range of quantile values from 0 to 1 of dependent variable distributions. Seasonal and regional features of daily minimum, mean, and maximum air temperature trends are considered in a wide range of quantile values. The proposed method that generalizes long-term trends obt ained for groups of stations by quantile regression, is applied to quasi-homogeneous climate regions identified on the territory of Russia.

Авторлар туралы

A. Sterin

All-Russian Research Institute of Hydrometeorological Information-World Data Center

Хат алмасуға жауапты Автор.
Email: sterin@meteo.ru
Ресей, ul. Koroleva 6, Obninsk, Kaluga oblast, 249035

A. Timofeev

All-Russian Research Institute of Hydrometeorological Information-World Data Center

Email: sterin@meteo.ru
Ресей, ul. Koroleva 6, Obninsk, Kaluga oblast, 249035

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Allerton Press, Inc., 2016