A simplified equivalent thermal circuit for the substitution of a stator in an induction motor


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Based on a review of investigations of the thermal behavior of induction motors, it has been established that the stator winding of an induction motor is subject to very high values of temperature in most applications and work regimes. The analysis of techniques to determine the temperatures of different units of an induction motor helped us to propose the use of equivalent thermal circuits, in particular, a simplified substitution circuit for the determination of winding and a magnetic conductor of a stator. The thermal equilibrium equations were found. A technique to calculate the thermal resistances of a stator by means of a laboratory setup was developed. The setup considers the features of cooling specific types of motors; thus, it is unnecessary to observe an induction motor as an aerodynamic system. The technique was tested using a setup containing a 14-kW short-circuited induction motor. The temperatures in different units of a motor were measured using chromel–copel thermocouples, and its load simulated the load of a traction electric drive of transport vehicles. The results of the experimental investigation are presented to show the influence of the rotor speed and the cooling air flow on the thermal resistances.

About the authors

A. A. Pugachev

Bryansk State Technical University

Author for correspondence.
Email: journal-elektrotechnika@mail.ru
Russian Federation, Bryansk

A. S. Kosmodamianskii

Russian University of Transport

Email: journal-elektrotechnika@mail.ru
Russian Federation, Moscow, 127994

Yu. M. In’kov

Russian University of Transport

Email: journal-elektrotechnika@mail.ru
Russian Federation, Moscow, 127994

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Allerton Press, Inc.