Application of generalized switching laws for increasing current pulse value


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

To obtain the current pulses applied to the active load, the circuit breaking effect has been used in the primary winding of the pulse transformer. When the direct current voltage source is disconnected, the current of primary winding is reduced to zero, so that a current pulse is formed in the secondary winding of the pulse transformer that is transmitted into the load. A circuit of the inductive pulse generator operating on the basis of generalized switching laws was developed so as to increase the amplitude of current pulses in the active load and the corresponding power. The circuit contains a pulse transformer, the secondary winding of the pulse transformer is connected to the load, and an additional inductor is connected parallel to the primary winding of the pulse transformer. When the direct current voltage source is disconnected, the current of primary winding passes through zero and decreases to a negative value, which leads to a significant increase in the current pulse in the load. In accordance with the generalized law of commutation, the relationships for the calculation of the current jump of pulse transformer primary winding and a jump in the load current have been obtained. Using the state-space technique, mathematical models of the circuits mentioned above with linear active load have been developed. Theoretical and experimental studies have shown a significant increase in the current pulse value and its capacity in the active linear load when the inductive pulse generator has been used. The values of currents in inductive coils detected experimentally were practically the same as the calculated values.

About the authors

S. V. Pustynnikov

National Research Tomsk Polytechnic University

Author for correspondence.
Email: journal-elektrotechnika@mail.ru
Russian Federation, Tomsk

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Allerton Press, Inc.