Acesso aberto Acesso aberto  Acesso é fechado Acesso está concedido  Acesso é fechado Somente assinantes

Volume 59, Nº 1 (2018)

Mineral Processing of Nonferrous Metals

Quantum-Chemical Substantiation of Properties of a Bioreagent Oxidizing Nonferrous Metal Sulfides

Zhihong Z., Krylova L., Solozhenkin P.

Resumo

A structural formula and quantum-chemical characteristics of the most energetically probable stable conformation of a bioreagent molecule, which is formed upon oxidizing iron(II) ions by Acidithiobacillus ferrooxidans autotrophic mesophilic iron-oxidizing bacteria in a sulfuric acid solution consisting of iron(III) ions and three acidic residues of glucuronic acid, are determined. The bioreagent oxidant is widely applied in industry for leaching metals from sulfide ores of nonferrous metals and concentrates of concentration. Quantum- chemical characteristics of the bioreagent molecule are analyzed in comparison with anhydrous iron(III) sulfate, which is also used in hydrometallurgy as an oxidant. To investigate the structure and quantum- chemical characteristics, the molecular computer simulation method, the theory of boundary molecular orbitals, and the Pearson principle are used. It is established that the most energetically probable stable conformation of the bioreagent molecule contains acidic residue of glucuronic acid with a noncyclic structure. According to the results of investigations, the bioreagent is referred to more rigid Lewis acid (the electron acceptor) than Fe2(SO4)3. The bioreagent molecule is less polarized and has lower absolute electronegativity and a twofold larger volume. The theoretical substantiation of the larger persistence of primary sulfides (pyrite, pentlandite, and chalcopyrite) relative to secondary minerals (pyrrhotine, chalcosine, and covellite) is proposed based on calculated values of boundary molecular orbitals; absolute rigidity; and the electronegativity of iron, copper, and nickel sulfides. Characteristics determining the interaction efficiency (volume, heat of formation, steric energy and its components, total energy, etc.) of the bioreagent are multiply larger than for Fe2(SO4)3. The larger oxidative activity of the bioreagent relative to Fe2(SO4)3 can be substantiated by a higher partial charge of the iron atom and a longer bond length between the atoms, the lower energy of the lowest free molecular orbital, and increased degree of the charge transfer during the bioreagent interaction with sulfide minerals.

Russian Journal of Non-Ferrous Metals. 2018;59(1):1-5
pages 1-5 views

Physical Methods and Flotation Practice in the Beneficiation of a Low Grade Tungsten-Bearing Scheelite Ore

Mohammadnejad S., Noaparast M., Hosseini S., Aghazadeh S., Mousavinezhad S., Hosseini F.

Resumo

In this paper, beneficiation studies were carried out on a low-grade tungsten-bearing scheelite from Nezam Abad ore with total WO3 grade of 0.11%. Mineralogical studies showed that scheelite is mainly distributed in the ore and gangue minerals include Quartz and Tourmaline. Liberation degree (d80) of tungsten- bearing scheelite is achieved around particles size 150 μm. Gravity concentration, magnetic and flotation methods were conducted by using experimental designs including fractional factorial and response surface methodology. Gravity concentration results indicated that jig separator could not be able to improve tungsten grade in size fraction +600–1750 μm; however, shaking table increased feed grade up to 27.05% with total recovery more than 50% by using four stages concentration in the size range of +125–600 μm. Multi Gravity Separator (MGS) applied on the intermediate products, improved efficiently the total tungsten recovery of the circuit. The results of flotation practice on the pre-concentrated product demonstrated that WO3 grade could be increased up to 9.2% with total recovery of 27.04% by using one stage rougher and four stages of cleaning. Different methods including MGS, wet and dry magnetic separation were considered for upgrading fines from grinding stages; however, only MGS result was satisfactory. The MGS produced a product with WO3 grade 0.64% and total recovery 93%.

Russian Journal of Non-Ferrous Metals. 2018;59(1):6-15
pages 6-15 views

Mineralogical Characterisation of an Ag–In-Bearing Polymetallic Ore with Regard to Its Mineral Separation Behaviour

Tong X., Lv H., Chen Y., Xie X.

Resumo

Polymetallic ores always contain precious rare metals which have high economic value. There is a large-scale copper (Cu)–zinc (Zn)–stannum (Sn) polymetallic ore deposit in Dulong, Yunnan Province, China. The polymetallic ore deposit contains a lot of silver (Ag) and indium (In). In this paper, the polymetallic ore is investigated to explore the characteristics of its process mineralogy by X-ray diffraction (XRD), X-ray fluorescence (XRF), optical microscopy (OM), and electron probe micro-analyser (EMPA). The contents of the main valuable elements in the ore are Cu 0.20%, Zn 3.93%, Sn 0.47%, Fe 22.70% and S 9.90%. Cu, Zn, Sn, and Fe mainly occur in chalcopyrite, marmatite, cassiterite and magnetite, respectively. In addition, as rare metal elements, there are also Ag 4.9 g/t and In 90.50 g/t in the ore. Ag mainly occurs in matildite and an unknown mineral (Ag0.75(Zn, Fe)0.25S) and these two minerals are all enclosed and disseminated in marmatite. In does not form an independent mineral, but an isomorphism element which mainly occurs in marmatite. Based on the results of the process mineralogy and actual conditions, a feasible flowsheet for this polymetallic ore is designed and optimized. The industrial experimental results show that processing capacity of the plant and the indexes of the concentrates are improved.

Russian Journal of Non-Ferrous Metals. 2018;59(1):16-22
pages 16-22 views

An Experimental Investigation on the Copper Recovery from Flotation Tailing Dams by Reflotation

Mousavinezhad S., Pourghahramani P., Aghazadeh S.

Resumo

In this study, the possibility of copper recovery from flotation tailing of Mazraeh copper mine was investigated. Magnetic separation method was used for concentration of non-magnetic minerals, especially copper bearing minerals, from iron minerals. As a result, copper grade increased up to 0.18% and its recovery reached 86%. Due to mineral’s oxidized surface, accompanied oxide minerals and large quantities of fine particles (i.e. about 80% and 57% were finer than 37 and 15 μm in the sample, respectively), flotation of copper was very difficult. In this regard, the effects of important factors including solution pH, type and collector dosage, dispersant, impeller speed, type of frother, percent solid and surface sulfurization were studied. It was concluded that copper recovery of 52% and copper grade of 2.7% could be obtained under following conditions: pH: 11, Collector: Z11 with 40 g/t, Impeller speed: 1400 rpm, Frother: A65, percent solid: 10% and surface sulfurization by Na2S with 1000 g/t. On the other hand, the addition of sodium silicate as a dispersant showed a negative effect on the flotation performance.

Russian Journal of Non-Ferrous Metals. 2018;59(1):23-31
pages 23-31 views

Foundry

The Influence of Composition and Heat Treatment on the Phase Composition and Mechanical Properties of ML19 Magnesium Alloy

Koltygin A., Bazhenov V., Letyagin N., Belov V.

Resumo

Samples of ML19 magnesium alloy with composition, wt %, (0.1–0.6)Zn–(0.4–1.0)Zr–(1.6–2.3)Nd–(1.4–2.2)Y have been investigated. The influence of Nd, Y, Zn, and Zr on equilibrium phase-transition temperatures and phase composition using Thermo-Calc software is established. The Scheil–Gulliver solidification model is also used. We show the significant liquidus temperature increase if the zirconium content in alloy is higher than (0.8–0.9) wt %. Thus, a higher melting temperature is required (more than 800°C). This is undesirable when melting in a steel crucible. The change in equilibrium fractions of phases at different temperatures in ML19 magnesium alloy with a minimum and maximum amount of alloying elements are calculated. Microstructures of alloys with different amounts of alloying elements in as-cast and heat-treated condition has been studied using scanning electron microscopy (SEM). We investigate the concentration profile of Nd, Y, Zn, and Zr in the dendritic cell of an as-cast alloy. The amount of neodymium and zinc on dendritic cell boundaries increased. A high concentration of yttrium is observed both in the center and on the boundaries of the dendritic cell. A high zirconium concentration is mainly observed in the center of the dendritic cells. A small amount of yttrium is also present in zirconium particles. These particles act as nucleation sites for the magnesium solid solution (Mg) during solidification. The effect of aging temperature (200 and 250°C) on the hardness of the samples after quenching was studied. Aging at 200°C provides a higher hardness. The change in the hardness of quenched samples during aging at 200°C is investigated. Maximum hardness is observed in samples aged for 16–20 h. The two-stage solution heat treatment for 2 h at 400°C and 8 h at 500°C with water quenching and aging at 200°C for 16 h is performed. This heat treatment enables us to get tensile strength 306 ± 8 MPa and yield strength 161 ± 1 MPa with elongation 8.7 ± 1.6%.

Russian Journal of Non-Ferrous Metals. 2018;59(1):32-41
pages 32-41 views

SHS Metallurgy of Composite Materials Based on the Nb–Si System

Yukhvid V., Andreev D., Sanin V., Sachkova N.

Resumo

Composite materials (CMs) based on niobium with functional and alloying additives (Si, Hf, Ti, Al, etc.) have prospects for industrial approval in aviation propulsion engineering. The authors previously showed that such CMs can be synthesized in an autowave mode (combustion mode) using highly exothermic mixtures of Nb2O5 with Al, Si, Hf, and Ti. It was found that hafnium actively participates in the reduction of Nb2O5, which complicates its introduction into the CM. This study is directed at investigating the possibility to synthesize Nb-based composite materials with a high Hf content using methods of centrifugal SHS metallurgy. It is shown in experimental investigations using a centrifugal installation under the effect of acceleration of 40 g that the replacement of active Hf by its less active compounds Hf–Al or Hf–Ti–Si–Al in the composition of the Nb2O5/Al mixtures makes it possible to transfer the combustion of the mixture from the explosion-like mode into the steady-state combustion mode. The content of Hf in the CM increases with an increase in the size of Hf–Al granules from 0–40 to 160–300 μm from 1.3 to 3.8 wt %. The introduction of Hf–Ti–Si–Al granules with a particle size from 1 to 3 mm into the initial charge makes it possible to form cast CMs based on niobium silicides with a Hf content up to 8.1 wt %. The integral composition and distribution of base and impurity elements in structure components of cast CMs, as well as their phase composition, were determined using electron microscopy and X-ray phase analysis. CMs with the maximal Hf content (8.1 wt %) contain three structural components: (1) the base, which includes Nb, Si, and Ti; (2) intergrain boundaries containing Nb, Ti, and Al; and (3) inclusions based on hafnium oxide. Three phases are revealed in the X-ray diffraction pattern of the CM, notably, solid solutions based on Nb and Nb5Si3, as well as a minor amount of Nb3Si.

Russian Journal of Non-Ferrous Metals. 2018;59(1):42-49
pages 42-49 views

A Novel Developed Grain Refiner (Al–Y–B Master Alloys) Using Yttrium and KBF4 Powders

Xu R., Sun Q., Wang Z., Xu Y., Ren W.

Resumo

The present work aims to report and discuss the development of a novel grain refiner (Al–Y–B master alloys) focusing on the characterization of the phenomena that exist during their production. Al–Y–B master alloy is produced by the combined employment of yttrium and boron, instead of yttrium or boron individually. It is discovered as a highly effective grain refiner for inoculating the grain size of Al–Si alloys. The crystallized microstructure can be refined though the effect of Y-based intermetallic on heterogeneity nucleus. The Y-based intermetallic is formed in the melts (Al–Y–B master alloy) by the addition of yttrium and KBF4 powers. A approach to produce Al–Y–B master alloys as well as its characterization by means of optical micrographs and SEM is presented. The study is assessed by testing the grain refining potency of the produced Al–Y–B master alloys in binary Al–20Si alloy. It is revealed that the approach employed to produce the Al–Y–B master alloys is suitable because the size of the primary phases is significantly reduced in each of the case investigated.

Russian Journal of Non-Ferrous Metals. 2018;59(1):50-55
pages 50-55 views

Pressure Treatment of Metals

Investigation into the Formation of Texture, Microstructure, and Anisotropy of Properties during Rolling Sheets of the Aluminum–Lithium 1420 Alloy

Grechnikov F., Erisov Y., Surudin S., Oglodkov M.

Resumo

Results of investigations into the formation of the crystallographic orientation of the structure and anisotropy of properties during rolling sheets of the aluminum–lithium 1420 alloy of the Al–Mg–Li system are given. Hot-rolled billets of the 1420 alloy were cold-rolled with intermediate quenching according to the following schedule: 7.3 mm → 4.8 mm → 3.0 mm → 1.8 mm. The samples were selected after each passage to perform mechanical testing and analyze the structure using optical microscopy and diffractometry. A deformed fibrous structure and considerable anisotropy of mechanical properties is characteristic of sheets of all considered states. Herewith, the maximal plasticity is observed at an angle of 45° to the rolling direction. The character of anisotropy of properties formed at the hot-rolling stage is not varied during cold rolling. Sheets of the 1420 alloy have a sharp deformation texture at all rolling stages due to the conservation of the unrecrystallized structure. For example, when analyzing pole figures and preferential orientations, an increase in volume fractions of rolling texture is revealed (the slow one of the brass type and more rapid of the S type) with the rise of summary deformations of cold rolling. The recrystallization texture (of the R type) is present in small amounts only after hot rolling. The volume fraction of the texture-free component decreases with an increase in summary deformations. It is concluded based on these results that, in order to decrease the fraction of the deformation texture and lower anisotropy of properties in sheets of the 1420 alloy, it is first and foremost necessary to provide the running of recrystallization at the hot-rolling stage in order to fabricate the recrystallized hot-rolled billet for subsequent cold rolling.

Russian Journal of Non-Ferrous Metals. 2018;59(1):56-61
pages 56-61 views

Development of Fabrication Modes of Deformed Semifinished Products from the Experimental Scandium-Containing Aluminum Alloy and Investigation into Their Mechanical Properties

Baranov V., Sidelnikov S., Zenkin E., Voroshilov D.

Resumo

The urgency of works directed at the fabrication of new alloys of the Al–Mg system alloyed with scandium, which are characterized by a profitable combination of operational and mechanical properties such as weldability, corrosion resistance, and sufficient strength, is shown. Flat ingots of the experimental scandium-containing alloy 560 × 1360 × 4520 mm in size are fabricated in industrial conditions. Modes of thermal treatment and sheet rolling are developed and approved for billets with a maximal thickness of 40 mm cut from them. A DUO 330 mill with flat rolls with an initial diameter of 330 mm and barrel width of 540 mm is used as the rolling equipment. Experimental investigations, which include the preparation of billets to rolling (homogenizing annealing and face milling), hot rolling at 450°C, cold rolling to a thickness of 3 mm, and annealing of cold-deformed semifinished products, result in the fabrication of deformed semifinished products fabricated according to various schemes of reduction during rolling and passed heat treatment. The maximal degree of summary deformation while rolling the billets to a thickness of 3 mm is 92.5%, while drawing for the passage varies from 1.04 to 1.2. Mechanical properties of deformed and annealed semifinished products of various thicknesses made of the experimental alloy are determined using an LFM400 universal test machine with an effort of 400 kN according to GOST (State Standard) 1497–84 and regularities of their variation, depending on the summary degree of deformation during rolling, are revealed. It is established that, when rolling strips made of the experimental scandium-containing aluminum alloy, the temporary tensile strength and yield strength of the material increase, while the relative elongation decreases, which corresponds to general ideas of the theory of metal forming. An analysis of the mechanical properties of the semifinished products shows that the level of strength and plastic properties is rather high, wherein the temporary tensile strength for cold-deformed samples reaches 453–481 MPa, the yield strength of metal reaches 429–457 MPa, and the relative elongation reaches 3.8–5.0%. The application of annealing made it possible to increase the relative elongation to 14–16% at sufficiently high values of the yield strength (up to 277 MPa). The results of our investigations allow us to develop the modes of casting, rolling, and annealing for the preparation of semifinished products made of the alloy of the Al–Mg system economically alloyed with scandium in limits of 0.10–0.14%, which will be used when approving the machining technologies in industrial conditions.

Russian Journal of Non-Ferrous Metals. 2018;59(1):62-66
pages 62-66 views

Combined Effect of Calcium and Silicon on the Phase Composition and Structure of Al–10%Mg Alloy

Belov N., Naumova E., Doroshenko V., Avxentieva N.

Resumo

Phase transformations in the Al–Ca–Mg–Si system in the region of aluminum–magnesium alloys are investigated using the Thermo-Calc program. The liquidus projection of the quaternary system is constructed with a Mg content of 10% and it is shown that phases Al4Ca, Mg2Si, and Al2CaSi2 can crystallize (in addition to the aluminum solid solution (Al)) depending on the calcium and silicon concentrations. The crystallization character of quaternary alloys is investigated with the help of a polythermal cross section calculated at concentrations of 10% Mg and 84% Al. Based on the analysis of phase transformations occurring in alloys of this section, the presence of the Al–Al2CaSi2–Mg2Si quasi-ternary section in the Al–Ca–Mg–Si system was assumed. Three experimental alloys were considered from a quantitative analysis of the phase composition, notably, Al–10% Ca–10% Mg–2% Si, Al–4% Ca–10% Mg–2% Si, and Al–3% Ca–10% Mg–1% Si. Metallographic investigations and electron-probe microanalysis were performed using a TESCAN Vega 3 scanning electron microscope. Critical temperatures are determined using a DSC Setaram Setsys Evolution differential calorimeter. The experimental results agree well with the calculated data; in particular, a peak at t ~ 450°C is revealed for all alloys in curves of the nonequilibrium solidus and invariant eutectic reaction L → (Al) + Al4Ca + Mg2Si + Al3Mg2. It is established that the structure of the Al–3% Ca–10% Mg–1% Si alloy is closest to the eutectic alloy. It is no worse that the AMg10 alloy in regards to density and corrosion resistance and even surpasses it in hardness, which allows us to consider this alloy as the basis for the development of a new cast material: “natural composites.”

Russian Journal of Non-Ferrous Metals. 2018;59(1):67-75
pages 67-75 views

Physical Metallurgy and Heat Treatment

Kinetics and High-Temperature Oxidation Mechanism of Ceramic Materials in the ZrB2–SiC–MoSi2 System

Iatsyuk I., Potanin A., Rupasov S., Levashov E.

Resumo

This study is devoted to the fabrication of the ZrB2–SiC–(MoSi2) compact ceramics according to hybrid technology (self-propagating high-temperature synthesis (SHS) + hot pressing), as well as to investigating its phase composition, structure, and high-temperature oxidation kinetics. Reaction mixtures are prepared according to the following scheme: mechanical activation (MA) of Si + C powders; wet admixing of Zr, B, and Si + C MA-mixture powders; and drying mixtures in a drying oven. The ZrB2–SiC SHS composite powder is formed in a reactor in a combustion mode by elemental synthesis. Compact samples with a homogeneous structure and low residual porosity not exceeding 1.3% are formed by hot pressing the SHS powder. Two compositions are selected for testing, notably, the first one calculated for the formation of ZrB2 + 25% SiC; the second composition is similar to the first one, but with the addition of 5% of the MoSi2 commercial powder. The microstructure of the samples is presented by dispersed dark gray rounded SiC grains distributed among light faceted ZrB2 grains. The sample with the MoSi2 additive has a more finely dispersed structure. The high-temperature oxidation of the samples at 1200°C results in the formation of SiO2‒ZrB2–(B2O3) complex oxide films on their surface with a thickness on the order of 20–30 μm, which serve as an efficient diffusion barrier and lower the oxidation rate. Their structure also contains ZrSiO4 complex oxide after prolonged holding (longer than 10 h). In addition, an insignificant weight loss of the samples is observed after 10 h testing, which is caused by the volatilization of gaseous oxidation products (B2O2, CO/CO2, MoO3). The sample with the MoSi2 additive shows better resistance to oxidation.

Russian Journal of Non-Ferrous Metals. 2018;59(1):76-81
pages 76-81 views

Effect of Welding Speed on Gas Metal Arc Weld Pool in Commercially Pure Aluminum: Theoretically and Experimentally

Morakabiyan Esfahani M., Farzadi A., Alavi Zaree S.

Resumo

Temperature and velocity fields, and weld pool geometry during gas metal arc welding (GMAW) of commercially pure aluminum were predicted by solving equations of conservation of mass, energy and momentum in a three-dimensional transient model. Influence of welding speed was studied. In order to validate the model, welding experiments were conducted under the similar conditions. The calculated geometry of the weld pool were in good agreement with the corresponding experimental results. It was found that an increase in the welding speed results in a decrease peak temperature and maximum velocity in the weld pool, weld pool dimensions and width of the heat-affected zone (HAZ). Dimensionless analyses were employed to understand the importance of heat transfer by convection and the roles of various driving forces in the weld pool. According to dimensionless analyses droplet driving force strongly affected fluid flow in the weld pool.

Russian Journal of Non-Ferrous Metals. 2018;59(1):82-92
pages 82-92 views

Microstructural and Mechanical Characterization of as Weld and Aged Conditions of AA2219 Aluminium Alloy by Gas Tungsten Arc Welding Process

Arunkumar S., Sathiya P., Devakumaran K., Ramesh Kumar S.

Resumo

In this article, Welding of AA2219 aluminium alloy using Gas tungsten arc welding process (GTAW) and evaluation of metallurgical, mechanical and corrosion properties of the joints are discussed. The weld samples were subjected to ageing process at the temperature range of 195°C for a period of 5 h to improve the properties. AA2219 aluminium plates of thickness of 25 mm were welded using gas tungsten arc welding (GTAW) process in double V butt joint configuration. The input parameters considered in this work are welding current, voltage and welding speed. Tensile strength and hardness were measured as performance characteristics. The variation in the properties were justified with the help of microstructures. The same procedures were repeated for post weld heat treated samples and a comparison was made between as weld condition and age treated conditions. The post weld heat samples had better tensile strength and hardness values on comparing with the as weld samples. Fracture surface obtained from the tensile tested specimen revealed ductile mode of failure.

Russian Journal of Non-Ferrous Metals. 2018;59(1):93-101
pages 93-101 views

Protective Coatings La–Mn–Cu–O for Stainless-Steel Interconnector 08Х17Т for SOFC, Obtained by the Electrocrystallization Method from Non-Aqueous Solutions

Ananyev M., Solodyankin A., Eremin V., Farlenkov A., Khodimchuk A., Fetisov A., Chernik A., Yaskelychik V., Ostanina T., Zaikov Y.

Resumo

A novel method for the formation of the protective layer on stainless steel interconnectors for solid oxide fuel cells was developed. The method was based on the electrocrystallization of metals from non-aqueous solutions on the stainless-steel interconnector with consecutive thermal treatments. Suggested method was applied for the stainless-steel 08X17T. Chemical composition of the electrolyte for the electrocrystallization was made in order to obtain the oxide protective layer of the stainless-steel interconnector of the following composition: LaMn0.9Cu0.1O3. As a result, a uniform oxide layer was formed on the stainless-steel interconnector surface, protected the stainless-steel from the high-temperature oxidation leading to degradation of the functional properties of the interconnector. Forming coatings were characterized by means of grazing incidence X-rays diffraction, X-rays photoelectron spectroscopy and scanning electron microscopy. Elemental analysis and phase composition have shown that the main components of the protective coatings are found to be compounds with perovskite and spinel structures. The protective coating in the contact with cathode material based on lanthanum-strontium manganite shows significant decrease of chromium propagation from the stainless steel as a result of the diffusive firing in comparison with the sample of the stainless steel without the protective coating. Electrical resistance of the interconnector with the protective coating does not show noticeable degradation during at least 500 h at the temperature 850°C in ambient air.

Russian Journal of Non-Ferrous Metals. 2018;59(1):102-110
pages 102-110 views

Self-Propagating High-Temperature Synthesis

Fabrication of Cerium Oxide Nanoparticles by Solution Combustion Synthesis and Their Cytotoxicity Evaluation

Zarezadeh Mehrizi M., Ahmadi S., Beygi R., Asadi M.

Resumo

The diverse abilities such as the antioxidant effect of cerium oxide nanoparticles (CeO2-NPs) have encouraged researchers to pursue CeO2-NPs as a therapeutic agent to treat a number of diseases, including cancer and diabetes. The synthesis method of CeO2-NPs affected on its abilities. In this study, nanosize ceria powders were synthesized by combustion of aqueous containing corresponding cerium nitrate, ammonium nitrate, and glycine redox mixtures. Solution combustion synthesis is a fast and cost-efficient process with high purity product. The crystallite structures were characterized by various methods, including X-ray diffraction technique, high-resolution scanning electron microscopy, transmission electron microscopy, and UV–vis spectroscopy technique. The combustion was flaming and yields voluminous oxides with nano size (20–30 nm). In addition, no diffraction patterns that are characteristic of impurities were observed, indicating the purity of the CeO2-NPs. In vitro cytotoxicity studies on L929 cells, a non-toxic effect in all concentration (up to 1000 μg/mL) was indicated and it can be believed that this nanoparticle will have viable applications in different medical fields.

Russian Journal of Non-Ferrous Metals. 2018;59(1):111-116
pages 111-116 views

Refractory, Ceramic, and Composite Materials

Reaction Pathways of Nanocomposite Synthesized in-situ from Mechanical Activated Al–C–TiO2 Powder Mixture

Zarezadeh Mehrizi M., Mostaan H., Beygi R., Rafiei M., Abbasian A.

Resumo

In-situ Al matrix composite was synthesized from Al–TiO2–C powder mixtures using mechanical alloying and heat treatment, subsequently. The effect of ball milling on reaction processes of the resulting nanocomposite was investigated. The evaluation of powder mixture without mechanical activation showed that at 900°C aluminum reduced TiO2, forming Al3Ti and Al2O3. After 20 h mechanical activation of powder mixture, Al3Ti and Al2O3 were fabricated. After that, by increasing milling time up to 30 h, no new phases formed. The DTA analysis of 30 h milled powder indicated two peaks after aluminum melting at 730 and 900°C. The XRD results confirmed that at 730°C, molten Al reacted with TiO2 and C, forming Al3Ti, Al2O3 and Al4C3. After that, at 900°C, Al3Ti reacted with Al4C3, causing TiC formation. This results proposed that the TiC formation is associated by a series of reactions between intermediate products, Al3Ti and Al4C3 and the resultant nanocomposite was successfully synthesized after 30 h milling and heated by DTA analysis up to 1200°C.

Russian Journal of Non-Ferrous Metals. 2018;59(1):117-122
pages 117-122 views

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies