Estimating the Index of Increase via Balancing Deterministic and Random Data
- Авторы: Chen L.1, Davydov Y.2, Gribkova N.3, Zitikis R.1
-
Учреждения:
- School of Math. and Statist. Sci.
- Chebyshev Lab.
- Faculty Math. and Mech.
- Выпуск: Том 27, № 2 (2018)
- Страницы: 83-102
- Раздел: Article
- URL: https://journals.rcsi.science/1066-5307/article/view/225829
- DOI: https://doi.org/10.3103/S1066530718020011
- ID: 225829
Цитировать
Аннотация
We introduce and explore an empirical index of increase that works in both deterministic and random environments, thus allowing to assess monotonicity of functions that are prone to random measurement errors. We prove consistency of the index and show how its rate of convergence is influenced by deterministic and random parts of the data. In particular, the obtained results suggest a frequency at which observations should be taken in order to reach any pre-specified level of estimation precision.We illustrate the index using data arising from purely deterministic and error-contaminated functions, which may or may not be monotonic.
Ключевые слова
Об авторах
L. Chen
School of Math. and Statist. Sci.
Автор, ответственный за переписку.
Email: lchen522@uwo.ca
Канада, London
Y. Davydov
Chebyshev Lab.
Email: lchen522@uwo.ca
Россия, St. Petersburg, 199178
N. Gribkova
Faculty Math. and Mech.
Email: lchen522@uwo.ca
Россия, St. Petersburg
R. Zitikis
School of Math. and Statist. Sci.
Email: lchen522@uwo.ca
Канада, London
Дополнительные файлы
