Estimating the Index of Increase via Balancing Deterministic and Random Data


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We introduce and explore an empirical index of increase that works in both deterministic and random environments, thus allowing to assess monotonicity of functions that are prone to random measurement errors. We prove consistency of the index and show how its rate of convergence is influenced by deterministic and random parts of the data. In particular, the obtained results suggest a frequency at which observations should be taken in order to reach any pre-specified level of estimation precision.We illustrate the index using data arising from purely deterministic and error-contaminated functions, which may or may not be monotonic.

Авторлар туралы

L. Chen

School of Math. and Statist. Sci.

Хат алмасуға жауапты Автор.
Email: lchen522@uwo.ca
Канада, London

Y. Davydov

Chebyshev Lab.

Email: lchen522@uwo.ca
Ресей, St. Petersburg, 199178

N. Gribkova

Faculty Math. and Mech.

Email: lchen522@uwo.ca
Ресей, St. Petersburg

R. Zitikis

School of Math. and Statist. Sci.

Email: lchen522@uwo.ca
Канада, London

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Allerton Press, Inc., 2018