Estimating the Index of Increase via Balancing Deterministic and Random Data
- Авторлар: Chen L.1, Davydov Y.2, Gribkova N.3, Zitikis R.1
-
Мекемелер:
- School of Math. and Statist. Sci.
- Chebyshev Lab.
- Faculty Math. and Mech.
- Шығарылым: Том 27, № 2 (2018)
- Беттер: 83-102
- Бөлім: Article
- URL: https://journals.rcsi.science/1066-5307/article/view/225829
- DOI: https://doi.org/10.3103/S1066530718020011
- ID: 225829
Дәйексөз келтіру
Аннотация
We introduce and explore an empirical index of increase that works in both deterministic and random environments, thus allowing to assess monotonicity of functions that are prone to random measurement errors. We prove consistency of the index and show how its rate of convergence is influenced by deterministic and random parts of the data. In particular, the obtained results suggest a frequency at which observations should be taken in order to reach any pre-specified level of estimation precision.We illustrate the index using data arising from purely deterministic and error-contaminated functions, which may or may not be monotonic.
Негізгі сөздер
Авторлар туралы
L. Chen
School of Math. and Statist. Sci.
Хат алмасуға жауапты Автор.
Email: lchen522@uwo.ca
Канада, London
Y. Davydov
Chebyshev Lab.
Email: lchen522@uwo.ca
Ресей, St. Petersburg, 199178
N. Gribkova
Faculty Math. and Mech.
Email: lchen522@uwo.ca
Ресей, St. Petersburg
R. Zitikis
School of Math. and Statist. Sci.
Email: lchen522@uwo.ca
Канада, London
Қосымша файлдар
