A Semi-Parametric Mode Regression with Censored Data
- 作者: Khardani S.1
-
隶属关系:
- Laborat.de Phys.Math.
- 期: 卷 28, 编号 1 (2019)
- 页面: 39-56
- 栏目: Article
- URL: https://journals.rcsi.science/1066-5307/article/view/225876
- DOI: https://doi.org/10.3103/S1066530719010034
- ID: 225876
如何引用文章
详细
In this work we suppose that the random vector (X, Y) satisfies the regression model Y = m(X) + ϵ, where m(·) belongs to some parametric class {\({m_\beta}(\cdot):\beta \in \mathbb{K}\)} and the error ϵ is independent of the covariate X. The response Y is subject to random right censoring. Using a nonlinear mode regression, a new estimation procedure for the true unknown parameter vector β0is proposed that extends the classical least squares procedure for nonlinear regression. We also establish asymptotic properties for the proposed estimator under assumptions of the error density. We investigate the performance through a simulation study.
作者简介
S. Khardani
Laborat.de Phys.Math.
编辑信件的主要联系方式.
Email: khardani_salah@yahoo.fr
突尼斯, Hammam-Sousse
补充文件
