A Semi-Parametric Mode Regression with Censored Data


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In this work we suppose that the random vector (X, Y) satisfies the regression model Y = m(X) + ϵ, where m(·) belongs to some parametric class {\({m_\beta}(\cdot):\beta \in \mathbb{K}\)} and the error ϵ is independent of the covariate X. The response Y is subject to random right censoring. Using a nonlinear mode regression, a new estimation procedure for the true unknown parameter vector β0is proposed that extends the classical least squares procedure for nonlinear regression. We also establish asymptotic properties for the proposed estimator under assumptions of the error density. We investigate the performance through a simulation study.

作者简介

S. Khardani

Laborat.de Phys.Math.

编辑信件的主要联系方式.
Email: khardani_salah@yahoo.fr
突尼斯, Hammam-Sousse

补充文件

附件文件
动作
1. JATS XML

版权所有 © Allerton Press, Inc., 2019