Asymptotic Distribution of Least Squares Estimators for Linear Models with Dependent Errors: Regular Designs


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We consider the usual linear regression model in the case where the error process is assumed strictly stationary.We use a result of Hannan, who proved a Central Limit Theorem for the usual least squares estimator under general conditions on the design and the error process.We show that for a large class of designs, the asymptotic covariance matrix is as simple as in the independent and identically distributed (i.i.d.) case.We then estimate the covariance matrix using an estimator of the spectral density whose consistency is proved under very mild conditions.

作者简介

E. Caron

Ecole Centrale Nantes

编辑信件的主要联系方式.
Email: emmanuel.caron@ec-nantes.fr
法国, Nantes, 6629

S. Dede

Lycée Stanislas

Email: emmanuel.caron@ec-nantes.fr
法国, Paris

补充文件

附件文件
动作
1. JATS XML

版权所有 © Allerton Press, Inc., 2018