The multivariate Révész’s online estimator of a regression function and its averaging


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The first aim of this paper is to generalize the online estimator of a regression function introduced by Révész [26, 27] to the multivariate framework. Similarly to the univariate framework, the study of the convergence rate of the multivariate Révész’s estimator requires a tedious condition connecting the stepsize of the algorithm and the unknown value of the density of the regressor variable at the point at which the regression function is estimated. The second aim of this paper is to apply the averaging principle of stochastic approximation algorithms to remove this tedious condition.

作者简介

A. Mokkadem

Labor. Math. de Versailles, UVSQ, CNRS

编辑信件的主要联系方式.
Email: abdelkader.mokkadem@uvsq.fr
法国, Versailles

M. Pelletier

Labor. Math. de Versailles, UVSQ, CNRS

Email: abdelkader.mokkadem@uvsq.fr
法国, Versailles

补充文件

附件文件
动作
1. JATS XML

版权所有 © Allerton Press, Inc., 2016