Using semantic analysis of texts for the identification of drugs with similar therapeutic effects


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Semantic analysis of text collections was used to identify drugs with similar therapeutic activity. Natural language processing methods were applied to analyse > 2.5 mln texts from drug reviews (in English) found on patient forums and discussion boards. In order to obtain distributed word representations form the input data, a continuous bag-of-words type model was used. Such model is one of the word2vec models intended to analyse the natural language semantics. This allowed the assignment of a numeric vector to each drug name. A list of pairs of drugs with similar vectors was formed. An analysis of this list confirmed that similar word vectors correspond to either drugs with the same active compound or to drugs with close therapeutic effects that belong to the same therapeutic group. The chemical similarity in such drug pairs was found to be low. The suggested procedure was used to visualize the chemical drug space and in the search for compounds with potentially similar biological effects among drugs of different therapeutic groups.

Об авторах

E. Tutubalina

Kazan Federal University

Автор, ответственный за переписку.
Email: elvtutubalina@kpfu.ru
Россия, 18 ul. Kremlyovskaya, Kazan, 420008

Z. Miftahutdinov

Kazan Federal University

Email: elvtutubalina@kpfu.ru
Россия, 18 ul. Kremlyovskaya, Kazan, 420008

R. Nugmanov

Kazan Federal University

Email: elvtutubalina@kpfu.ru
Россия, 18 ul. Kremlyovskaya, Kazan, 420008

T. Madzhidov

Kazan Federal University

Email: elvtutubalina@kpfu.ru
Россия, 18 ul. Kremlyovskaya, Kazan, 420008

S. Nikolenko

Kazan Federal University; St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences

Email: elvtutubalina@kpfu.ru
Россия, 18 ul. Kremlyovskaya, Kazan, 420008; 27 nab. Reki Fontanki, St. Petersburg, 191011

I. Alimova

Kazan Federal University

Email: elvtutubalina@kpfu.ru
Россия, 18 ul. Kremlyovskaya, Kazan, 420008

A. Tropsha

Kazan Federal University; University of North Carolina at Chapel Hill

Email: elvtutubalina@kpfu.ru
Россия, 18 ul. Kremlyovskaya, Kazan, 420008; 153A Country club Road, Jackson Hall, North Carolina, NC 27514

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2017

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».