Effect of phosphate buffer solutions on the reactions of glutathione with hydrogen peroxide and peroxyl radicals
- Авторы: Zinatullina K.M.1, Kasaikina O.T.1, Kuzmin V.A.2, Khrameeva N.P.2, Pisarenko L.M.1
- 
							Учреждения: 
							- N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences
- N. M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences
 
- Выпуск: Том 68, № 7 (2019)
- Страницы: 1441-1444
- Раздел: Full Articles
- URL: https://journals.rcsi.science/1066-5285/article/view/243435
- DOI: https://doi.org/10.1007/s11172-019-2574-4
- ID: 243435
Цитировать
Аннотация
Differences in the kinetics and mechanism of the reaction of glutathione (GSH) with hydrogen peroxide (H2O2) in deionized water and in phosphate buffer systems with pH ≥ 7 frequently used in biochemical studies were revealed. The formation of GSH dimers and complexes with H2O2 in water plays a substantial role in the kinetics of the process, which is manifested as nonlinear dependences of the rate of GSH consumption (WGSH) and the rate of radical formation (Wi) on the reagent concentrations. In phosphate buffer solutions (PBS), the oxidation of GSH by air oxygen is enhanced and the radical formation rate decreases sharply. An effect of NaCl and KCl in PBS on WGSH and Wi was observed, unlike a sodium—potassium phosphate buffer mixture (PB). Under other equivalent conditions, WGSH PBS is several times lower and Wi is higher than those in PB containing no chlorides. It was found that the rate of the thiol-ene reaction of unsaturated phenol resveratrol (RVT) with GSH initiated by the radicals formed in the presence of H2O2 in PBS is nearly three times lower than that in water, whereas in PB resveratrol is not consumed under the same conditions. However, in the reactions with peroxyl radicals formed upon the decomposition of 2,2′-azobis(2-methylpropionamidine) dihydrochloride the GSH consumption rate is the same in both phosphate buffer systems.
Об авторах
K. Zinatullina
N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences
							Автор, ответственный за переписку.
							Email: karinazinatll@gmail.com
				                					                																			                												                	Россия, 							4 ul. Kosygina, Moscow, 119991						
O. Kasaikina
N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences
														Email: karinazinatll@gmail.com
				                					                																			                												                	Россия, 							4 ul. Kosygina, Moscow, 119991						
V. Kuzmin
N. M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences
														Email: karinazinatll@gmail.com
				                					                																			                												                	Россия, 							4 ul. Kosygina, Moscow, 119991						
N. Khrameeva
N. M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences
														Email: karinazinatll@gmail.com
				                					                																			                												                	Россия, 							4 ul. Kosygina, Moscow, 119991						
L. Pisarenko
N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences
														Email: karinazinatll@gmail.com
				                					                																			                												                	Россия, 							4 ul. Kosygina, Moscow, 119991						
Дополнительные файлы
 
				
			 
						 
					 
						 
						 
						 
									 
  
  
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail  Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Только для подписчиков
		                                		                                        Только для подписчиков
		                                					