🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

On Lindeberg–Feller Limit Theorem


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

In the Lindeberg–Feller theorem, the Lindeberg condition is present. The fulfillment of this condition must be checked for any ε > 0. We formulae a new condition in terms of some generalization of moments of order 2 + \(\alpha \), which does not depend on ε, and show that this condition is equivalent to the Lindeberg condition, and if this condition is valid for some \(\alpha > 0\) then it is valid for any \(\alpha \) > 0. In the nonclassical setting (in the absence of conditions of a uniform infinitely smallness) V.I. Rotar formulated an analogue of the Lindeberg condition in terms of the second pseudo-momens. The paper presents the same modification of Rotar’s condition, which does not depend on ε. In addition, we discuss variants of the simple proofs of theorems of Lindeberg–Feller and Rotar and some related inequalities.

Авторлар туралы

E. Presman

Central Economics and Mathematics Institute,
Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: presman@ccmi.rssi.ru
Ресей, Moscow

Sh. Formanov

Romanovskiy Institute of Mathematics, Academy of Sciences of Uzbekistan

Хат алмасуға жауапты Автор.
Email: shakirformanov@yandex.ru
Өзбекстан, Tashkent

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2019