On Lindeberg–Feller Limit Theorem


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In the Lindeberg–Feller theorem, the Lindeberg condition is present. The fulfillment of this condition must be checked for any ε > 0. We formulae a new condition in terms of some generalization of moments of order 2 + \(\alpha \), which does not depend on ε, and show that this condition is equivalent to the Lindeberg condition, and if this condition is valid for some \(\alpha > 0\) then it is valid for any \(\alpha \) > 0. In the nonclassical setting (in the absence of conditions of a uniform infinitely smallness) V.I. Rotar formulated an analogue of the Lindeberg condition in terms of the second pseudo-momens. The paper presents the same modification of Rotar’s condition, which does not depend on ε. In addition, we discuss variants of the simple proofs of theorems of Lindeberg–Feller and Rotar and some related inequalities.

作者简介

E. Presman

Central Economics and Mathematics Institute,
Russian Academy of Sciences

编辑信件的主要联系方式.
Email: presman@ccmi.rssi.ru
俄罗斯联邦, Moscow

Sh. Formanov

Romanovskiy Institute of Mathematics, Academy of Sciences of Uzbekistan

编辑信件的主要联系方式.
Email: shakirformanov@yandex.ru
乌兹别克斯坦, Tashkent

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2019