Left-invariant Riemannian problems on the groups of proper motions of hyperbolic plane and sphere
- Авторлар: Podobryaev A.V.1, Sachkov Y.L.1
-
Мекемелер:
- Ailamazyan Program Systems Institute of RAS
- Шығарылым: Том 95, № 2 (2017)
- Беттер: 176-177
- Бөлім: Mathematics
- URL: https://journals.rcsi.science/1064-5624/article/view/224973
- DOI: https://doi.org/10.1134/S1064562417020223
- ID: 224973
Дәйексөз келтіру
Аннотация
On the Lie groups PSL2(ℝ) and SO3 we consider left-invariant Riemannian metrics with two equal eigenvalues. The global optimality of geodesics is investigated. We find the parametrization of geodesics, the cut locus and the equations for the cut time. When the third eigenvalue of a metric tends to the infinity the cut locus and the cut time converge to the cut locus and the cut time of the sub-Riemannian problem.
Авторлар туралы
A. Podobryaev
Ailamazyan Program Systems Institute of RAS
Хат алмасуға жауапты Автор.
Email: alex@alex.botik.ru
Ресей, 4a Petra-I, s. Veskovo, Pereslavl district, Yaroslavl region, 152021
Yu. Sachkov
Ailamazyan Program Systems Institute of RAS
Email: alex@alex.botik.ru
Ресей, 4a Petra-I, s. Veskovo, Pereslavl district, Yaroslavl region, 152021
Қосымша файлдар
