Left-invariant Riemannian problems on the groups of proper motions of hyperbolic plane and sphere


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

On the Lie groups PSL2(ℝ) and SO3 we consider left-invariant Riemannian metrics with two equal eigenvalues. The global optimality of geodesics is investigated. We find the parametrization of geodesics, the cut locus and the equations for the cut time. When the third eigenvalue of a metric tends to the infinity the cut locus and the cut time converge to the cut locus and the cut time of the sub-Riemannian problem.

作者简介

A. Podobryaev

Ailamazyan Program Systems Institute of RAS

编辑信件的主要联系方式.
Email: alex@alex.botik.ru
俄罗斯联邦, 4a Petra-I, s. Veskovo, Pereslavl district, Yaroslavl region, 152021

Yu. Sachkov

Ailamazyan Program Systems Institute of RAS

Email: alex@alex.botik.ru
俄罗斯联邦, 4a Petra-I, s. Veskovo, Pereslavl district, Yaroslavl region, 152021

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2017