Left-invariant Riemannian problems on the groups of proper motions of hyperbolic plane and sphere
- 作者: Podobryaev A.V.1, Sachkov Y.L.1
-
隶属关系:
- Ailamazyan Program Systems Institute of RAS
- 期: 卷 95, 编号 2 (2017)
- 页面: 176-177
- 栏目: Mathematics
- URL: https://journals.rcsi.science/1064-5624/article/view/224973
- DOI: https://doi.org/10.1134/S1064562417020223
- ID: 224973
如何引用文章
详细
On the Lie groups PSL2(ℝ) and SO3 we consider left-invariant Riemannian metrics with two equal eigenvalues. The global optimality of geodesics is investigated. We find the parametrization of geodesics, the cut locus and the equations for the cut time. When the third eigenvalue of a metric tends to the infinity the cut locus and the cut time converge to the cut locus and the cut time of the sub-Riemannian problem.
作者简介
A. Podobryaev
Ailamazyan Program Systems Institute of RAS
编辑信件的主要联系方式.
Email: alex@alex.botik.ru
俄罗斯联邦, 4a Petra-I, s. Veskovo, Pereslavl district, Yaroslavl region, 152021
Yu. Sachkov
Ailamazyan Program Systems Institute of RAS
Email: alex@alex.botik.ru
俄罗斯联邦, 4a Petra-I, s. Veskovo, Pereslavl district, Yaroslavl region, 152021
补充文件
