On exact dimensional splitting for a multidimensional scalar quasilinear hyperbolic conservation law
- Авторы: Bragin M.D.1, Rogov B.V.1,2
-
Учреждения:
- Moscow Institute of Physics and Technology (State University)
- Keldysh Institute of Applied Mathematics
- Выпуск: Том 94, № 1 (2016)
- Страницы: 382-386
- Раздел: Mathematics
- URL: https://journals.rcsi.science/1064-5624/article/view/223966
- DOI: https://doi.org/10.1134/S1064562416040086
- ID: 223966
Цитировать
Аннотация
A dimensional splitting scheme is applied to a multidimensional scalar homogeneous quasilinear hyperbolic equation (conservation law). It is proved that the splitting error is zero. The proof is presented for the above partial differential equation in an arbitrary number of dimensions. A numerical example is given that illustrates the proved accuracy of the splitting scheme. In the example, the grid convergence of split (locally one-dimensional) compact and bicompact difference schemes and unsplit bicompact schemes combined with high-order accurate time-stepping schemes (namely, Runge–Kutta methods of order 3, 4, and 5) is analyzed. The errors of the numerical solutions produced by these schemes are compared. It is shown that the orders of convergence of the split schemes remain high, which agrees with the conclusion that the splitting error is zero.
Об авторах
M. Bragin
Moscow Institute of Physics and Technology (State University)
Автор, ответственный за переписку.
Email: michael@bragin.cc
Россия, Institutskii per. 9, Dolgoprudnyi, Moscow oblast, 141700
B. Rogov
Moscow Institute of Physics and Technology (State University); Keldysh Institute of Applied Mathematics
Email: michael@bragin.cc
Россия, Institutskii per. 9, Dolgoprudnyi, Moscow oblast, 141700; Miusskaya pl. 4, Moscow, 125047
Дополнительные файлы
