On exact dimensional splitting for a multidimensional scalar quasilinear hyperbolic conservation law


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

A dimensional splitting scheme is applied to a multidimensional scalar homogeneous quasilinear hyperbolic equation (conservation law). It is proved that the splitting error is zero. The proof is presented for the above partial differential equation in an arbitrary number of dimensions. A numerical example is given that illustrates the proved accuracy of the splitting scheme. In the example, the grid convergence of split (locally one-dimensional) compact and bicompact difference schemes and unsplit bicompact schemes combined with high-order accurate time-stepping schemes (namely, Runge–Kutta methods of order 3, 4, and 5) is analyzed. The errors of the numerical solutions produced by these schemes are compared. It is shown that the orders of convergence of the split schemes remain high, which agrees with the conclusion that the splitting error is zero.

Об авторах

M. Bragin

Moscow Institute of Physics and Technology (State University)

Автор, ответственный за переписку.
Email: michael@bragin.cc
Россия, Institutskii per. 9, Dolgoprudnyi, Moscow oblast, 141700

B. Rogov

Moscow Institute of Physics and Technology (State University); Keldysh Institute of Applied Mathematics

Email: michael@bragin.cc
Россия, Institutskii per. 9, Dolgoprudnyi, Moscow oblast, 141700; Miusskaya pl. 4, Moscow, 125047

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Ltd., 2016

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).