On the Finiteness of the Number of Elliptic Fields with Given Degrees of \(S\)-Units and Periodic Expansion of \(\sqrt f \)


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

For a field k of characteristic 0, up to a natural equivalence relation, it is proved that the number of nontrivial elliptic fields \(k(x)(\sqrt f )\) with a periodic continued fraction expansion of \(\sqrt f \in k((x))\) for which the corresponding elliptic curve contains a k-point of even order at most 18 or a k-point of odd order at most 11 is finite. In the case when k is a quadratic extension of \(\mathbb{Q}\), all such fields are found.

作者简介

V. Platonov

Scientific Research Institute for System Analysis,
Russian Academy of Sciences; Steklov Mathematical Institute, Russian Academy
of Sciences

编辑信件的主要联系方式.
Email: platonov@niisi.ras.ru
俄罗斯联邦, Moscow, 117218; Moscow, 119991

M. Petrunin

Scientific Research Institute for System Analysis,
Russian Academy of Sciences

编辑信件的主要联系方式.
Email: petrushkin@yandex.ru
俄罗斯联邦, Moscow, 117218

Yu. Shteinikov

Scientific Research Institute for System Analysis,
Russian Academy of Sciences

编辑信件的主要联系方式.
Email: yuriisht@yandex.ru
俄罗斯联邦, Moscow, 117218

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2019