On the Existence of a Nearly Optimal Skeleton Approximation of a Matrix in the Frobenius Norm


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

For an arbitrary matrix, we prove the existence of a skeleton approximation of rank r whose accuracy estimate is only r + 1 times worse than the estimate of the optimal approximation of rank r in the Frobenius norm.

作者简介

N. Zamarashkin

Institute of Numerical Mathematics; Faculty of Computational Mathematics and Cybernetics; Moscow Institute of Physics and Technology (State University)

Email: sasha_o@list.ru
俄罗斯联邦, Moscow, 119333; Moscow, 119991; Dolgoprudnyi, Moscow oblast, 141700

A. Osinsky

Institute of Numerical Mathematics; Moscow Institute of Physics and Technology (State University)

编辑信件的主要联系方式.
Email: sasha_o@list.ru
俄罗斯联邦, Moscow, 119333; Dolgoprudnyi, Moscow oblast, 141700

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018