On the Existence of a Nearly Optimal Skeleton Approximation of a Matrix in the Frobenius Norm
- Autores: Zamarashkin N.L.1,2,3, Osinsky A.I.1,3
-
Afiliações:
- Institute of Numerical Mathematics
- Faculty of Computational Mathematics and Cybernetics
- Moscow Institute of Physics and Technology (State University)
- Edição: Volume 97, Nº 2 (2018)
- Páginas: 164-166
- Seção: Mathematics
- URL: https://journals.rcsi.science/1064-5624/article/view/225483
- DOI: https://doi.org/10.1134/S1064562418020205
- ID: 225483
Citar
Resumo
For an arbitrary matrix, we prove the existence of a skeleton approximation of rank r whose accuracy estimate is only r + 1 times worse than the estimate of the optimal approximation of rank r in the Frobenius norm.
Sobre autores
N. Zamarashkin
Institute of Numerical Mathematics; Faculty of Computational Mathematics and Cybernetics; Moscow Institute of Physics and Technology (State University)
Email: sasha_o@list.ru
Rússia, Moscow, 119333; Moscow, 119991; Dolgoprudnyi, Moscow oblast, 141700
A. Osinsky
Institute of Numerical Mathematics; Moscow Institute of Physics and Technology (State University)
Autor responsável pela correspondência
Email: sasha_o@list.ru
Rússia, Moscow, 119333; Dolgoprudnyi, Moscow oblast, 141700
Arquivos suplementares
