Lμ → Lν equiconvergence of spectral decompositions for a Dirac system with Lκ potential
- 作者: Sadovnichaya I.V.1
-
隶属关系:
- Faculty of Computational Mathematics and Cybernetics
- 期: 卷 93, 编号 2 (2016)
- 页面: 223-226
- 栏目: Mathematics
- URL: https://journals.rcsi.science/1064-5624/article/view/223627
- DOI: https://doi.org/10.1134/S1064562416020307
- ID: 223627
如何引用文章
详细
It is proved that if P ∈ Lκ[0, π], κ ∈ (1, ∞], then the expansions of any function f ∈ Lμ[0, π], μ ∈ [1, ∞], in the generalized eigenfunctions of the perturbed and unperturbed operators are equiconvergent in the norm of the space Lν[0, π], provided that ν ∈ [1, ∞] satisfies the inequality \(\frac{1}{\kappa } + \frac{1}{\mu } - \frac{1}{\nu } \leqslant 1\), except in the case where κ = ν = ∞ and μ = 1.
作者简介
I. Sadovnichaya
Faculty of Computational Mathematics and Cybernetics
编辑信件的主要联系方式.
Email: ivsad@yandex.ru
俄罗斯联邦, Moscow, 119991
补充文件
