Lμ → Lν equiconvergence of spectral decompositions for a Dirac system with Lκ potential
- Autores: Sadovnichaya I.V.1
-
Afiliações:
- Faculty of Computational Mathematics and Cybernetics
- Edição: Volume 93, Nº 2 (2016)
- Páginas: 223-226
- Seção: Mathematics
- URL: https://journals.rcsi.science/1064-5624/article/view/223627
- DOI: https://doi.org/10.1134/S1064562416020307
- ID: 223627
Citar
Resumo
It is proved that if P ∈ Lκ[0, π], κ ∈ (1, ∞], then the expansions of any function f ∈ Lμ[0, π], μ ∈ [1, ∞], in the generalized eigenfunctions of the perturbed and unperturbed operators are equiconvergent in the norm of the space Lν[0, π], provided that ν ∈ [1, ∞] satisfies the inequality \(\frac{1}{\kappa } + \frac{1}{\mu } - \frac{1}{\nu } \leqslant 1\), except in the case where κ = ν = ∞ and μ = 1.
Palavras-chave
Sobre autores
I. Sadovnichaya
Faculty of Computational Mathematics and Cybernetics
Autor responsável pela correspondência
Email: ivsad@yandex.ru
Rússia, Moscow, 119991
Arquivos suplementares
