Lμ → Lν equiconvergence of spectral decompositions for a Dirac system with Lκ potential
- Авторлар: Sadovnichaya I.V.1
-
Мекемелер:
- Faculty of Computational Mathematics and Cybernetics
- Шығарылым: Том 93, № 2 (2016)
- Беттер: 223-226
- Бөлім: Mathematics
- URL: https://journals.rcsi.science/1064-5624/article/view/223627
- DOI: https://doi.org/10.1134/S1064562416020307
- ID: 223627
Дәйексөз келтіру
Аннотация
It is proved that if P ∈ Lκ[0, π], κ ∈ (1, ∞], then the expansions of any function f ∈ Lμ[0, π], μ ∈ [1, ∞], in the generalized eigenfunctions of the perturbed and unperturbed operators are equiconvergent in the norm of the space Lν[0, π], provided that ν ∈ [1, ∞] satisfies the inequality \(\frac{1}{\kappa } + \frac{1}{\mu } - \frac{1}{\nu } \leqslant 1\), except in the case where κ = ν = ∞ and μ = 1.
Негізгі сөздер
Авторлар туралы
I. Sadovnichaya
Faculty of Computational Mathematics and Cybernetics
Хат алмасуға жауапты Автор.
Email: ivsad@yandex.ru
Ресей, Moscow, 119991
Қосымша файлдар
