The Least Distance between Extrema and the Minimum Period of Solutions of Autonomous Vector Differential Equations


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Solutions x(t) of the equation \(\dot {x} = f(x)\), where \(x \in {{{\text{R}}}^{n}}\) and the function f(x) satisfies the Lipschitz condition with an arbitrary vector norm, are considered. It is proved that the lower bound for the distances between successive extrema xk(t), k = 1, 2, …, n, is \(\frac{\pi }{L}\), where L is the Lipschitz constant. For nonconstant periodic solutions, the lower bound for the periods is \(\frac{{2\pi }}{L}\). These estimates are sharp for norms that are invariant with respect to permutations of indices.

Sobre autores

A. Zevin

Institute of Transportation Systems and Technologies, National Academy of Sciences of Ukraine

Autor responsável pela correspondência
Email: alexandr.zevin@gmail.com
Ucrânia, Dnepr, 49005

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2019