The Least Distance between Extrema and the Minimum Period of Solutions of Autonomous Vector Differential Equations
- Авторлар: Zevin A.A.1
-
Мекемелер:
- Institute of Transportation Systems and Technologies, National Academy of Sciences of Ukraine
- Шығарылым: Том 99, № 2 (2019)
- Беттер: 143-144
- Бөлім: Mathematics
- URL: https://journals.rcsi.science/1064-5624/article/view/225643
- DOI: https://doi.org/10.1134/S1064562419020108
- ID: 225643
Дәйексөз келтіру
Аннотация
Solutions x(t) of the equation \(\dot {x} = f(x)\), where \(x \in {{{\text{R}}}^{n}}\) and the function f(x) satisfies the Lipschitz condition with an arbitrary vector norm, are considered. It is proved that the lower bound for the distances between successive extrema xk(t), k = 1, 2, …, n, is \(\frac{\pi }{L}\), where L is the Lipschitz constant. For nonconstant periodic solutions, the lower bound for the periods is \(\frac{{2\pi }}{L}\). These estimates are sharp for norms that are invariant with respect to permutations of indices.
Авторлар туралы
A. Zevin
Institute of Transportation Systems and Technologies, National Academy of Sciences of Ukraine
Хат алмасуға жауапты Автор.
Email: alexandr.zevin@gmail.com
Украина, Dnepr,
49005
Қосымша файлдар
