A Generalization of the Kravchenko–Kotelnikov Theorem by Spectra of Compactly Supported Infinitely Differentiable Functions \(h_{a}^{{(m)}}(x)\)


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A new generalization of the Kravchenko–Kotelnikov theorem by spectra of compactly supported infinitely differentiable functions \(h_{{\mathbf{a}}}^{{(m)}}(x)\) is considered. These functions are solutions of linear integral equations of a special form. The spectrum of \(h_{{\mathbf{a}}}^{{(m)}}(x)\) is a multiple infinite product of the spectra of the atomic functions \({{h}_{a}}(x)\) dilated with respect to the argument. The resulting generalized series is characterized by fast convergence, which is confirmed by the truncation error bound presented in the study and by the results of a numerical experiment.

作者简介

K. Budunova

Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: 1917schw@mail.ru
俄罗斯联邦, Moscow, 125009

V. Kravchenko

Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences

Email: 1917schw@mail.ru
俄罗斯联邦, Moscow, 125009

V. Pustovoit

Scientific and Technological Center of Unique Instrumentation, Russian Academy of Sciences

Email: 1917schw@mail.ru
俄罗斯联邦, Moscow, 117342

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2019