Convexity of Suns in Tangent Directions


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A direction \(d\) is called a tangent direction to the unit sphere \(S\) if the conditions that \(s \in S\) and \({\text{lin}}(s + d)\) is a supporting line to \(S\) at the point s imply that \({\text{lin}}(s + d)\) is a semitangent line to S, i.e., is the limit of secants at s. A set M is called convex in a direction \(d\) if \(x,y \in M\) and \((y - x)\parallel d\) imply that \([x,y] \subset M\). In an arbitrary normed linear space, an arbitrary sun (in particular, a boundedly compact Chebyshev set) is proved to be convex in any tangent direction of the unit sphere.

作者简介

A. Alimov

Faculty of Mechanics and Mathematics,
Moscow State University; Steklov Mathematical Institute, Russian Academy
of Sciences

编辑信件的主要联系方式.
Email: alexey.alimov@gmail.com
俄罗斯联邦, Moscow, 119991; Moscow, 119991

E. Shchepin

Steklov Mathematical Institute, Russian Academy
of Sciences

编辑信件的主要联系方式.
Email: scepin@mi.ras.ru
俄罗斯联邦, Moscow, 119991

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2019