Feynman path integrals and Lebesgue–Feynman measures


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The definition of Feynman path integrals (Feynman functional integrals) as integrals with respect to a generalized measure, called the Lebesgue–Feynman measure in the paper and being an infinite-dimensional analogue of the classical Lebesgue measure on finite-dimensional Euclidean space, is discussed. This definition, which is a formalization of Feynman’s original definition, is different from those used previously in the mathematical literature. It makes it possible to give a description of the origin of quantum anomaly which is a mathematically correct version of the description given in the book Path Integrals and Quantum Anomalies by K. Fujikawa and H. Suzuki (Oxford, 2004) (and erroneously qualified as wrong in the book Functional Integration: Action and Symmetries by P. Cartier and C. DeWitt-Morette (Cambridge Univ. Press, Cambridge, 2006)).

Авторлар туралы

J. Montaldi

School of Mathematics

Email: smolyanov@yandex.ru
Ұлыбритания, Manchester, M13 9PL

O. Smolyanov

Mechanics and Mathematics Faculty

Хат алмасуға жауапты Автор.
Email: smolyanov@yandex.ru
Ресей, Moscow, 119991

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2017