Feynman path integrals and Lebesgue–Feynman measures


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The definition of Feynman path integrals (Feynman functional integrals) as integrals with respect to a generalized measure, called the Lebesgue–Feynman measure in the paper and being an infinite-dimensional analogue of the classical Lebesgue measure on finite-dimensional Euclidean space, is discussed. This definition, which is a formalization of Feynman’s original definition, is different from those used previously in the mathematical literature. It makes it possible to give a description of the origin of quantum anomaly which is a mathematically correct version of the description given in the book Path Integrals and Quantum Anomalies by K. Fujikawa and H. Suzuki (Oxford, 2004) (and erroneously qualified as wrong in the book Functional Integration: Action and Symmetries by P. Cartier and C. DeWitt-Morette (Cambridge Univ. Press, Cambridge, 2006)).

作者简介

J. Montaldi

School of Mathematics

Email: smolyanov@yandex.ru
英国, Manchester, M13 9PL

O. Smolyanov

Mechanics and Mathematics Faculty

编辑信件的主要联系方式.
Email: smolyanov@yandex.ru
俄罗斯联邦, Moscow, 119991

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2017