Analytic continuation formulas and Jacobi-type relations for Lauricella function
- Авторы: Bezrodnykh S.I.1,2
-
Учреждения:
- Dorodnicyn Computing Centre, Federal Research Center “Computer Science and Control”
- Sternberg Astronomical Institute
- Выпуск: Том 93, № 2 (2016)
- Страницы: 129-134
- Раздел: Mathematics
- URL: https://journals.rcsi.science/1064-5624/article/view/223447
- DOI: https://doi.org/10.1134/S1064562416020022
- ID: 223447
Цитировать
Аннотация
An approach for constructing a complete system of formulas for the analytic continuation of the Lauricella generalized hypergeometric function FD(N) with any N beyond the boundary of the unit polydisk is proposed. The approach is exposed in detail for the continuation of the function under consideration in neighborhoods of points whose all N components equal 1 or ∞. For the Lauricella function, differential relations being analogues of Jacobi’s formula for the Gaussian hypergeometric function are also presented. The results can be applied to solve the crowding problem for the Schwarz–Christoffel integral and to the theory of the Riemann–Hilbert problem.
Ключевые слова
Об авторах
S. Bezrodnykh
Dorodnicyn Computing Centre, Federal Research Center “Computer Science and Control”; Sternberg Astronomical Institute
Автор, ответственный за переписку.
Email: sbezrodnykh@mail.ru
Россия, ul. Vavilova 40, Moscow, 119333; Universitetskii pr. 13, Moscow, 119991
Дополнительные файлы
