Analytic continuation formulas and Jacobi-type relations for Lauricella function
- 作者: Bezrodnykh S.I.1,2
-
隶属关系:
- Dorodnicyn Computing Centre, Federal Research Center “Computer Science and Control”
- Sternberg Astronomical Institute
- 期: 卷 93, 编号 2 (2016)
- 页面: 129-134
- 栏目: Mathematics
- URL: https://journals.rcsi.science/1064-5624/article/view/223447
- DOI: https://doi.org/10.1134/S1064562416020022
- ID: 223447
如何引用文章
详细
An approach for constructing a complete system of formulas for the analytic continuation of the Lauricella generalized hypergeometric function FD(N) with any N beyond the boundary of the unit polydisk is proposed. The approach is exposed in detail for the continuation of the function under consideration in neighborhoods of points whose all N components equal 1 or ∞. For the Lauricella function, differential relations being analogues of Jacobi’s formula for the Gaussian hypergeometric function are also presented. The results can be applied to solve the crowding problem for the Schwarz–Christoffel integral and to the theory of the Riemann–Hilbert problem.
作者简介
S. Bezrodnykh
Dorodnicyn Computing Centre, Federal Research Center “Computer Science and Control”; Sternberg Astronomical Institute
编辑信件的主要联系方式.
Email: sbezrodnykh@mail.ru
俄罗斯联邦, ul. Vavilova 40, Moscow, 119333; Universitetskii pr. 13, Moscow, 119991
补充文件
