Spectral problem with Steklov condition on a thin perforated interface
- Авторлар: Gadyl’shin R.R.1,2, Piatnitski A.L.3,4, Chechkin G.A.5
-
Мекемелер:
- Bashkir State Pedagogical University
- Bashkir State University
- Narvik University College
- Lebedev Physical Institute
- Faculty of Mechanics and Mathematics
- Шығарылым: Том 93, № 1 (2016)
- Беттер: 52-57
- Бөлім: Mathematics
- URL: https://journals.rcsi.science/1064-5624/article/view/223370
- DOI: https://doi.org/10.1134/S1064562416010191
- ID: 223370
Дәйексөз келтіру
Аннотация
A two-dimensional Steklov-type spectral problem for the Laplacian in a domain divided into two parts by a perforated interface with a periodic microstructure is considered. The Steklov boundary condition is set on the lateral sides of the channels, a Neumann condition is specified on the rest of the interface, and a Dirichlet and Neumann condition is set on the outer boundary of the domain. Two-term asymptotic expansions of the eigenvalues and the corresponding eigenfunctions of this spectral problem are constructed.
Негізгі сөздер
Авторлар туралы
R. Gadyl’shin
Bashkir State Pedagogical University; Bashkir State University
Хат алмасуға жауапты Автор.
Email: gadylshin@yandex.ru
Ресей, ul. Oktyabr’skoi revolyutsii 3a, Ufa, 450000; ul. Zaki Validi 32, Ufa, 450076
A. Piatnitski
Narvik University College; Lebedev Physical Institute
Email: gadylshin@yandex.ru
Норвегия, Narvik, 8505; Leninskii pr. 53, Moscow, 117924
G. Chechkin
Faculty of Mechanics and Mathematics
Email: gadylshin@yandex.ru
Ресей, Moscow, 119992
Қосымша файлдар
