Spectral problem with Steklov condition on a thin perforated interface


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A two-dimensional Steklov-type spectral problem for the Laplacian in a domain divided into two parts by a perforated interface with a periodic microstructure is considered. The Steklov boundary condition is set on the lateral sides of the channels, a Neumann condition is specified on the rest of the interface, and a Dirichlet and Neumann condition is set on the outer boundary of the domain. Two-term asymptotic expansions of the eigenvalues and the corresponding eigenfunctions of this spectral problem are constructed.

作者简介

R. Gadyl’shin

Bashkir State Pedagogical University; Bashkir State University

编辑信件的主要联系方式.
Email: gadylshin@yandex.ru
俄罗斯联邦, ul. Oktyabr’skoi revolyutsii 3a, Ufa, 450000; ul. Zaki Validi 32, Ufa, 450076

A. Piatnitski

Narvik University College; Lebedev Physical Institute

Email: gadylshin@yandex.ru
挪威, Narvik, 8505; Leninskii pr. 53, Moscow, 117924

G. Chechkin

Faculty of Mechanics and Mathematics

Email: gadylshin@yandex.ru
俄罗斯联邦, Moscow, 119992

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2016