Spectral problem with Steklov condition on a thin perforated interface
- 作者: Gadyl’shin R.R.1,2, Piatnitski A.L.3,4, Chechkin G.A.5
 - 
							隶属关系: 
							
- Bashkir State Pedagogical University
 - Bashkir State University
 - Narvik University College
 - Lebedev Physical Institute
 - Faculty of Mechanics and Mathematics
 
 - 期: 卷 93, 编号 1 (2016)
 - 页面: 52-57
 - 栏目: Mathematics
 - URL: https://journals.rcsi.science/1064-5624/article/view/223370
 - DOI: https://doi.org/10.1134/S1064562416010191
 - ID: 223370
 
如何引用文章
详细
A two-dimensional Steklov-type spectral problem for the Laplacian in a domain divided into two parts by a perforated interface with a periodic microstructure is considered. The Steklov boundary condition is set on the lateral sides of the channels, a Neumann condition is specified on the rest of the interface, and a Dirichlet and Neumann condition is set on the outer boundary of the domain. Two-term asymptotic expansions of the eigenvalues and the corresponding eigenfunctions of this spectral problem are constructed.
作者简介
R. Gadyl’shin
Bashkir State Pedagogical University; Bashkir State University
							编辑信件的主要联系方式.
							Email: gadylshin@yandex.ru
				                					                																			                												                	俄罗斯联邦, 							ul. Oktyabr’skoi revolyutsii 3a, Ufa, 450000; ul. Zaki Validi 32, Ufa, 450076						
A. Piatnitski
Narvik University College; Lebedev Physical Institute
														Email: gadylshin@yandex.ru
				                					                																			                												                	挪威, 							Narvik, 8505; Leninskii pr. 53, Moscow, 117924						
G. Chechkin
Faculty of Mechanics and Mathematics
														Email: gadylshin@yandex.ru
				                					                																			                												                	俄罗斯联邦, 							Moscow, 119992						
补充文件
				
			
						
						
					
						
						
				