Infinite Kirchhoff Plate on a Compact Elastic Foundation May Have an Arbitrarily Small Eigenvalue


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

An inhomogeneous Kirchhoff plate composed of a semi-infinite strip waveguide and a compact resonator that is in contact with a Winkler foundation of low variable compliance is considered. It is shown that, for any \(\varepsilon > {\text{0}}\), a compliance coefficient \(O({{\varepsilon }^{2}})\) can be found such that the described plate possesses the eigenvalue ε4 embedded into the continuous spectrum. This result is quite surprising, because, in an acoustic waveguide (the spectral Neumann problem for the Laplace operator) a small eigenvalue does not exist for any slight perturbation. The cause of this disagreement is explained.

Авторлар туралы

S. Nazarov

St. Petersburg State University

Хат алмасуға жауапты Автор.
Email: srgnazarov@yahoo.co.uk
Ресей, St. Petersburg, 199034

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2019