On admissible changes of variables for Sobolev functions on (sub)Riemannian manifolds


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We give a description of metric properties of measurable mappings of domains on Riemannian manifolds inducing isomorphisms of Sobolev spaces by the composition rule. We prove that any such mapping can be redefined on a set of measure zero to be quasi-isometric, when the exponent of summability is different from the dimension of a Riemannian manifold or to coincide with a quasi-conformal mapping otherwise.

作者简介

S. Vodopyanov

Sobolev Institute of Mathematics, Siberian Branch; Novosibirsk State University; Peoples’ Friendship University of Russia

编辑信件的主要联系方式.
Email: vodopis@math.nsc.ru
俄罗斯联邦, pr. Akademika Koptyuga 4, Novosibirsk, 630090; ul. Pirogova 2, Novosibirsk, 630090; ul. Miklukho-Maklaya 6, Moscow, 117198

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2016