On admissible changes of variables for Sobolev functions on (sub)Riemannian manifolds
- 作者: Vodopyanov S.K.1,2,3
-
隶属关系:
- Sobolev Institute of Mathematics, Siberian Branch
- Novosibirsk State University
- Peoples’ Friendship University of Russia
- 期: 卷 93, 编号 3 (2016)
- 页面: 318-321
- 栏目: Mathematics
- URL: https://journals.rcsi.science/1064-5624/article/view/223858
- DOI: https://doi.org/10.1134/S1064562416030315
- ID: 223858
如何引用文章
详细
We give a description of metric properties of measurable mappings of domains on Riemannian manifolds inducing isomorphisms of Sobolev spaces by the composition rule. We prove that any such mapping can be redefined on a set of measure zero to be quasi-isometric, when the exponent of summability is different from the dimension of a Riemannian manifold or to coincide with a quasi-conformal mapping otherwise.
作者简介
S. Vodopyanov
Sobolev Institute of Mathematics, Siberian Branch; Novosibirsk State University; Peoples’ Friendship University of Russia
编辑信件的主要联系方式.
Email: vodopis@math.nsc.ru
俄罗斯联邦, pr. Akademika Koptyuga 4, Novosibirsk, 630090; ul. Pirogova 2, Novosibirsk, 630090; ul. Miklukho-Maklaya 6, Moscow, 117198
补充文件
