On admissible changes of variables for Sobolev functions on (sub)Riemannian manifolds
- Авторлар: Vodopyanov S.K.1,2,3
-
Мекемелер:
- Sobolev Institute of Mathematics, Siberian Branch
- Novosibirsk State University
- Peoples’ Friendship University of Russia
- Шығарылым: Том 93, № 3 (2016)
- Беттер: 318-321
- Бөлім: Mathematics
- URL: https://journals.rcsi.science/1064-5624/article/view/223858
- DOI: https://doi.org/10.1134/S1064562416030315
- ID: 223858
Дәйексөз келтіру
Аннотация
We give a description of metric properties of measurable mappings of domains on Riemannian manifolds inducing isomorphisms of Sobolev spaces by the composition rule. We prove that any such mapping can be redefined on a set of measure zero to be quasi-isometric, when the exponent of summability is different from the dimension of a Riemannian manifold or to coincide with a quasi-conformal mapping otherwise.
Авторлар туралы
S. Vodopyanov
Sobolev Institute of Mathematics, Siberian Branch; Novosibirsk State University; Peoples’ Friendship University of Russia
Хат алмасуға жауапты Автор.
Email: vodopis@math.nsc.ru
Ресей, pr. Akademika Koptyuga 4, Novosibirsk, 630090; ul. Pirogova 2, Novosibirsk, 630090; ul. Miklukho-Maklaya 6, Moscow, 117198
Қосымша файлдар
