Local semicircle law under weak moment conditions


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Symmetric random matrices are considered whose upper triangular entries are independent identically distributed random variables with zero mean, unit variance, and a finite moment of order 4 + δ, δ > 0. It is shown that the distances between the Stieltjes transforms of the empirical spectral distribution function and the semicircle law are of order lnn/nv, where v is the distance to the real axis in the complex plane. Applications concerning the convergence rate in probability to the semicircle law, localization of eigenvalues, and delocalization of eigenvectors are discussed.

作者简介

F. Götze

University of Bielefeld

编辑信件的主要联系方式.
Email: goetze@math.uni-bielefeld.de
德国, Bielefeld

A. Naumov

Faculty of Computational Mathematics and Cybernetics

Email: goetze@math.uni-bielefeld.de
俄罗斯联邦, Moscow, 119992

A. Tikhomirov

Komi Center of Science, Ural Branch

Email: goetze@math.uni-bielefeld.de
俄罗斯联邦, Syktyvkar

D. Timushev

Komi Center of Science, Ural Branch

Email: goetze@math.uni-bielefeld.de
俄罗斯联邦, Syktyvkar

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2016