Local semicircle law under weak moment conditions
- 作者: Götze F.1, Naumov A.A.2, Tikhomirov A.N.3, Timushev D.A.3
-
隶属关系:
- University of Bielefeld
- Faculty of Computational Mathematics and Cybernetics
- Komi Center of Science, Ural Branch
- 期: 卷 93, 编号 3 (2016)
- 页面: 248-250
- 栏目: Mathematics
- URL: https://journals.rcsi.science/1064-5624/article/view/223667
- DOI: https://doi.org/10.1134/S1064562416030029
- ID: 223667
如何引用文章
详细
Symmetric random matrices are considered whose upper triangular entries are independent identically distributed random variables with zero mean, unit variance, and a finite moment of order 4 + δ, δ > 0. It is shown that the distances between the Stieltjes transforms of the empirical spectral distribution function and the semicircle law are of order lnn/nv, where v is the distance to the real axis in the complex plane. Applications concerning the convergence rate in probability to the semicircle law, localization of eigenvalues, and delocalization of eigenvectors are discussed.
作者简介
F. Götze
University of Bielefeld
编辑信件的主要联系方式.
Email: goetze@math.uni-bielefeld.de
德国, Bielefeld
A. Naumov
Faculty of Computational Mathematics and Cybernetics
Email: goetze@math.uni-bielefeld.de
俄罗斯联邦, Moscow, 119992
A. Tikhomirov
Komi Center of Science, Ural Branch
Email: goetze@math.uni-bielefeld.de
俄罗斯联邦, Syktyvkar
D. Timushev
Komi Center of Science, Ural Branch
Email: goetze@math.uni-bielefeld.de
俄罗斯联邦, Syktyvkar
补充文件
