Local semicircle law under weak moment conditions
- Авторлар: Götze F.1, Naumov A.A.2, Tikhomirov A.N.3, Timushev D.A.3
-
Мекемелер:
- University of Bielefeld
- Faculty of Computational Mathematics and Cybernetics
- Komi Center of Science, Ural Branch
- Шығарылым: Том 93, № 3 (2016)
- Беттер: 248-250
- Бөлім: Mathematics
- URL: https://journals.rcsi.science/1064-5624/article/view/223667
- DOI: https://doi.org/10.1134/S1064562416030029
- ID: 223667
Дәйексөз келтіру
Аннотация
Symmetric random matrices are considered whose upper triangular entries are independent identically distributed random variables with zero mean, unit variance, and a finite moment of order 4 + δ, δ > 0. It is shown that the distances between the Stieltjes transforms of the empirical spectral distribution function and the semicircle law are of order lnn/nv, where v is the distance to the real axis in the complex plane. Applications concerning the convergence rate in probability to the semicircle law, localization of eigenvalues, and delocalization of eigenvectors are discussed.
Авторлар туралы
F. Götze
University of Bielefeld
Хат алмасуға жауапты Автор.
Email: goetze@math.uni-bielefeld.de
Германия, Bielefeld
A. Naumov
Faculty of Computational Mathematics and Cybernetics
Email: goetze@math.uni-bielefeld.de
Ресей, Moscow, 119992
A. Tikhomirov
Komi Center of Science, Ural Branch
Email: goetze@math.uni-bielefeld.de
Ресей, Syktyvkar
D. Timushev
Komi Center of Science, Ural Branch
Email: goetze@math.uni-bielefeld.de
Ресей, Syktyvkar
Қосымша файлдар
