Transmission problem for odd-order differential equations with two time variables and a varying direction of evolution
- Авторлар: Kozhanov A.I.1, Potapova S.V.2
-
Мекемелер:
- Sobolev Institute of Mathematics, Siberian Branch
- Research Institute of Mathematics
- Шығарылым: Том 95, № 3 (2017)
- Беттер: 267-269
- Бөлім: Mathematics
- URL: https://journals.rcsi.science/1064-5624/article/view/225122
- DOI: https://doi.org/10.1134/S1064562417030231
- ID: 225122
Дәйексөз келтіру
Аннотация
The solvability of a boundary value problem for the differential equation \(h\left( x \right){u_t} + {\left( { - 1} \right)^m}\frac{{{\partial ^{2m + 1}}u}}{{\partial {a^{2m + 1}}}} - {u_{xx}} = f\left( {x,t,a} \right)\) is studied in the case where h(x) has a jump discontinuity and reverses its sign on passing through the discontinuity point. Existence and uniqueness theorems are proved in the case of solutions having all Sobolev generalized derivatives involved in the equation.
Авторлар туралы
A. Kozhanov
Sobolev Institute of Mathematics, Siberian Branch
Хат алмасуға жауапты Автор.
Email: kozhanov@math.nsc.ru
Ресей, Novosibirsk, 630090
S. Potapova
Research Institute of Mathematics
Email: kozhanov@math.nsc.ru
Ресей, Yakutsk, 677000
Қосымша файлдар
